(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
fst(mark(X1), X2) → mark(fst(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
from(mark(X)) → mark(from(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
len(mark(X)) → mark(len(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
from(ok(X)) → ok(from(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
len(ok(X)) → ok(len(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)
The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active
Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(fst(0, Z)) → mark(nil)
active(fst(s(X), cons(Y, Z))) → mark(cons(Y, fst(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(len(nil)) → mark(0)
active(len(cons(X, Z))) → mark(s(len(Z)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(fst(X1, X2)) → fst(active(X1), X2)
active(fst(X1, X2)) → fst(X1, active(X2))
active(from(X)) → from(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
active(len(X)) → len(active(X))
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(fst(X1, X2)) → fst(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(len(X)) → len(proper(X))
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(ok(X)) → top(active(X))
proper(nil) → ok(nil)
from(ok(X)) → ok(from(X))
from(mark(X)) → mark(from(X))
fst(ok(X1), ok(X2)) → ok(fst(X1, X2))
len(mark(X)) → mark(len(X))
len(ok(X)) → ok(len(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
fst(X1, mark(X2)) → mark(fst(X1, X2))
s(ok(X)) → ok(s(X))
fst(mark(X1), X2) → mark(fst(X1, X2))
proper(0) → ok(0)
add(mark(X1), X2) → mark(add(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
top(mark(X)) → top(proper(X))
Rewrite Strategy: INNERMOST
(3) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5, 6, 7, 8]
transitions:
ok0(0) → 0
active0(0) → 0
nil0() → 0
mark0(0) → 0
00() → 0
add0(0, 0) → 1
top0(0) → 2
proper0(0) → 3
from0(0) → 4
fst0(0, 0) → 5
len0(0) → 6
cons0(0, 0) → 7
s0(0) → 8
add1(0, 0) → 9
ok1(9) → 1
active1(0) → 10
top1(10) → 2
nil1() → 11
ok1(11) → 3
from1(0) → 12
ok1(12) → 4
from1(0) → 13
mark1(13) → 4
fst1(0, 0) → 14
ok1(14) → 5
len1(0) → 15
mark1(15) → 6
len1(0) → 16
ok1(16) → 6
cons1(0, 0) → 17
ok1(17) → 7
add1(0, 0) → 18
mark1(18) → 1
fst1(0, 0) → 19
mark1(19) → 5
s1(0) → 20
ok1(20) → 8
01() → 21
ok1(21) → 3
cons1(0, 0) → 22
mark1(22) → 7
proper1(0) → 23
top1(23) → 2
ok1(9) → 9
ok1(9) → 18
ok1(11) → 23
ok1(12) → 12
ok1(12) → 13
mark1(13) → 12
mark1(13) → 13
ok1(14) → 14
ok1(14) → 19
mark1(15) → 15
mark1(15) → 16
ok1(16) → 15
ok1(16) → 16
ok1(17) → 17
ok1(17) → 22
mark1(18) → 9
mark1(18) → 18
mark1(19) → 14
mark1(19) → 19
ok1(20) → 20
ok1(21) → 23
mark1(22) → 17
mark1(22) → 22
active2(11) → 24
top2(24) → 2
active2(21) → 24
(4) BOUNDS(1, n^1)